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respect to 2s. 
Taking as basic bodies with exponents ml = 0.5, m2- 0.6, n/3 = 0.7, for m,, = 0.55 and m0 = 0.65 

and using formula (4) we obtain, & = 0.374, b,= 0.758, PI = -0.134 and fi, = -0.121, & = 0.734, j& = 0.389 
respectively. 

Curves of the functions C,&/nr) are shown in Fig.1, calculated using the results obtained 
in f6/ for a Mach number M,=~.&,co;~== 1.4 of the oncoming flow, and those calculated using 
the method described in /7/ are presented in Fig.2 for bcdies of exponential form with a 
spherical nose (this deformation does not require a recalculation of &,)forthree-dimensional 
flow of anidealgb overa bodya- 10“, M, = 20, y= 1.4. The small circlesanddots corretapond to re- 
calc~ationsusingEq.l3),the solidlinescorrespondto m,= O.&and the dashed lines to mp = 0.55. 

It can be se+en that the determination of aerodydc calculations using relations (3) 
enables us to obtain estimates of the aerodynamics force components that 
exact calculations for the supersonic flow of an‘ideal gas over a body. 
also to the flow of an equilibrium and non-equilibrium dissociating gas. 
the non-dependence of the coefficients &, on the flow conditions over 
of attack and, also, of which aerodynamic force component is considered, 

are very close to the 
This result applies 
For actual gas flows 
the body, the angle 
is confirmed. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

REFERENCES 

ALEKSEVA E.V. and BARAWTSEV R.G., A Local Method of Aerodynamic Calculation in aRarefied 
Gas. Leningrad* Isd. LGU, 1976. 

BUNIMOVICB A.I. and DUBIWSKII A.V., Local methods in gas dynamics. In: Annotatsii Qokl. 
S-go Vseso S"ezda po Tear. I Prikl. Wekhanfke. Alma-Ata, NAUEA, 1?81. 

Dynamics of Rarefied Gas. Tr. 6-go Vses. Konf.. Novosibirsk, Izd. Inst. Teplofiz. SO AN 
SSSR, Pt.1 and 2, 1980. 

BUNIMOVICH A.I. and CBISTCLINOV V.G., An analytic method of calculating aerodynamic forces 
in the three-dimensional problem under conditions of the "localizability law". PMM, Vol. 
39, No.3, 1975. 

YXJBINSKII A.V., Relations between the forces acting on bodies of different shapes moving 
in a gas. PWW, Vo1.44, No.1, 1981. 

Aexomechanics of Supersonic Flow Over Solids of Revolution of Exponential Form. Moscow, 
Mashinostroenier 1975. 

Antonets A.%, Calculation of three-dimensional supersonic flow over blunted bodies with 
discontinuities of the generatrix taking into account equilibrium and frozen states of 
the gas in the shock layer. Izv. AW SSSR, MEhG, N0.2, 1970. 

Translated by J.J.D. 

PXM LT.S.S.R.,Vo1.47,No.S,pp.702-707,1983 
Printed in Great Britain 

OGZl-8928/83 $lo.OC+O.CO 
03.985 Pergamon Press Ltd. 

UDC 539.375 

EQUILIBRIUM IN A CUT ALONG AN ARC OF A CIRCLE IN THE CASE OF 
INH~O~ENEOUS INTERACTION OF THE EDGES* 

1u.v. ZAITNIKOV and B.M. TULINCV 

Equilibrium in a cut along the arc of a circle is considered for the case 
of biaxial tension-compression. Under such a stress a free surface forms 
along the cut, and a zone of adhesion and mutual displacement appears in 
the region of contact when frictional forces are present. A non-singular 
solution is constructed for this case at the boundary of the zone of contact 
and free surface, and of the zone of adhesion and mutual displacement. 
Earlier, the problems of the free surface as well as the region of contact 
were considered in /l--3/. A solution was found in /4f for a cut along the 
arc of a circle in a complex state of stress for the case when the edges 
interact at the extension of the cut, taking into account the formation 
of the adhesion and displacement zones. 

1. Consider a cut along the arc of a unit circle. The equation of the cut in r,cd -co- 

ordinates is I== costt,y= sinB,ae<B<$. (%,po are thecoordinates of the cut boundary). We have 

at infinity the mutually perpendicular stresses P,~@<O,q=sP;O)and p makes an angle y with 
the o+-axis. We shall describe the stress state using the complex Kolosov-Muskhelishvili 
potentials a(x), V(I) /li 

0, +.ee = 2 lcb (r) 4 a* @)I (L.1) 

*prikl.Matem.~e~an.,47,5,874-880,1983. 
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2G (IL’ + in’) = IZ [ VQ, (z) -Q(G) - +-f) Y”‘(z)J 

n(,,=~($)-f~(~)-$y*($) 

au au 
“ZX, “‘ZT 

Here x= 3-4~ for plane deformation, X= (3-v)/(i+v) for the generalized plane state of stress, 
V is Poisson's ratio, G is the shear modulus, u and u are the displacement components along 

the 01 and Oy axes respectively and o~,o~.~~ are the stress tensor components in a system 
of polar coordinates with origin at the point 0. The displacement components in rectangular 
and 

The 

and 

polar coordinate vI,ve systems are connected by the following relations: 

u + iv = (V7 + $0,) L?*a (1.2) 

potentials@(z),Q(z)must be connected by the relation /l/ 

Q(O)= Q* (m) (1.3) 

the complex potentials have the following asymptotic forms: 

1 I 1 - co, UJ (2) = r, I (2) = r’, n (I) = - F/z= (1.4) 

r = (P + d/4, r’ = - % (P - d emfiv, I P I z I p 1 

We shall assume that only a single region of the free surface appears along the cut, and 
.__ _ 

we will denote it by L,, (e.g. at O<e-v<'rr). When there are no frictional forces the 
region of mutual displacements (we shall denote it by L) occupies the whole of the cut, while 
when there are frictional forces present a zone of mutual shear displacements (denoted by L,) 
adjacent, in general, to the zone of adhesion, will be adjacent to the free surface. Since 
there are no mutual displacements in the adhesion zone, we shall regard it as a continuum 
and specify the shear boundary condition in the domain of mutual displacements. 

2. Let us consider the case when there are no frictional forces from the region of cont- 
actbetween the cut edges. In this case the boundary conditions at the cut will be 

q$ =, 0, r- R*O; fEL,o$=O,t=L, (2.1) 

C++-V,-=o,tELy (1=9,.z,<C16Ba) 

Using the Kolosov-Muskhelishvili relations /l/ and conditions (2.1), we arrive at the follow- 
ing conjugation problem: 

~+_+@--((tP*++~*-)+Q++Q--(Q*++Q*-)=O,t~L 

a)++@-+@*++u++Q++Q-+n**+n*-=o, tEL1 
CD+-W--Q+ -Q-)= 0,f~L 

26 [(I/+ - u'-) + i (b+ - u’-)] = if [x (@+ - Cp-) + R+ - G-1, t E L 

We shall seek a solution of (2.2) in the form /3, 5/ 

(2.2) 

where (taking (1.2) and 

co(.)=& +J$+r 
s 
L 

n (2) = & 
s 

2!$++r_$-Dp, 1EL 
L 

(1.3) into account) 

2c (l&l+ r)=_- 
-I&'-)+ i (v'+ -u'_) 

x+1 1 = - (gl'+% -8 + ig'), 

C?(B) = $ (ue+ -ue-) 

g1(0) = 2G m("y+ - "7-l 

Dd=& 
s 

tl+dt 
?-_&[i~~W-s~~d~] 

L4 

(2.3) 

(2.4) 

The integrals in expressions (2.3) are computed as t 
/6/formulas. 

-t,EL using the 
On substituting expressions (2.3) for the complex potentials 

Sokhotskii-Plemilj 
Cp (s), Q (I), we find 

that the last two equations will be satisfied identically and the first equation will be red- 
uced to a singular integral equation with a solution of the form /6/ 
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q - q* = iA (1)/z (t) (2.5) 

A(t)L.AIPiA4fAgf+Ali~ D’+$+c 

Al=-I”, &=-..I+, As=---,,+,, 

A,=_B.q - (a + b) (a - b)Z 
16 ‘41, Dy%-r’* 

2fab ’ 
Ds = - W fs, B=-(Do+Do*) 

Multiplying both sides of (2.5) by i/t(tEL) and integrating along the cut, we obtain the 
relation 

C=-A,+A,*1/% (2.6) 

Substituting the expression for the function q(t) (2.4) and using relation (2.6), we 
arrive at a differential equation whose solution has the form 

h = 0, t E L,; h = 1. t E L, (2.7) 
8, 

g(B)=(F,t+ F,++ F4) x(t) 
. 

+_ir 75_+s+* gl(e)d@ a 
F,=-2, 

sib 
Fz=FIT, Fs= F,&& , F,E F&I/& 

s = - Bf,, 

where a11 61 denote the unknown boundaries of the free surface and (Q~<&). 
Substituting (2.3) into the second equation of (2.21, we arrive at a singular integral 

equation whose solution, utilizing the Poincare-Bertrand inversion formula /6/, has the form 

R, = -(RIq+Bl)y 

B = r’* (a + b) r’ (3~’ + 2ab + 3b*) 
1 

3ab $fs 

Ml=- 
(d -c f) 3w 

am 
, Mp+l/q; ~1 = )I@ -d) (2 - f) 

d = @, f = ,@1 

Multiplying both sides of (2.8) by i/t(tEL1) and integrating over L,, we obtain 

C,=-R,-R#f;ii--$ +dt$+ 
s s 

sdt 

L* L 

(2.9) 

An unknown constant Do appears in (2.7) and (2.8). To determine this constant we note 
that the constants C and C, are connected by the relation 

Fit + Fz + + + +) z(t) dt + + ’ s dt 
s 

L L 

(2.10) 

Using (2.6), (2.9), (2.10) we obtain 
D,, = (zl*I - z&*)/(ll* - kk’) 

- .- 
11 = $ ((3aa + Zab + 36’) (d + f) - 8 (a + b) )/ob Y df - 

3 (d + f) (d - 1)‘) + ‘;; (’ (d ;;F; b, - +j+#- - 

(30*+~,+3b*) ~@+4r(~a-~~)s, k=3(d+f)--Zv)/;ij-rr 

Z=d+f--6~~-rr,, rl=-+ 
s 

+dt+ w’;;+vi;)” 
L 

(2.11) 

In general, expressions (2.8), taking (2.10) and (2.11) into account, define a singular 
solution at the points t = d, t = f, characterized by the follwing intensity coefficients /5/: 

K,+ = lim, $qT=ij 181’ (e) I; K,- = Jl, 1/2(8 I g1’ N% I (2.12) 

Since the singular normal stresses at the cut near the boundary of the region of the free 
surface will always result in coupling on the compressed section of the crack, we shall 



construct a non-singular solution at 
/2, 3/ we shall use, as the condition 
equal zero 
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this boundary. by analogy with the criterion used in 
of equilibrium, that the stress intensity coefficients 

R (t) = 0 (2.13) 

Equation (2.13) determines the unknown boundaries of 
the free surface and the contact zone. If both roots 

of the equation are found to lie inside the cut for,< 

a, Q B1 d PO), then the zone of contact touches the 
left and right tip of the initial cut, while if one of 
the roots lies outside the cut, free-surface zone appears 
touching one of the crack tips. Thus Eq.(2.12) and 
expressions (2.7),(~.8),(2.~0),(2.ii)t~ether determine the stress 
state of a solid,weakened by a plane, arc-like cut. 

The figure shows a graph of the stress intensity 
coefficients K1+, K,-,K,+,K$-(th e solid lines show the 
quantities with the plus index, and the dashed lines 
those with the minus index), at the crack tip and the length of the region of free surface on 
the stresses p,p(p= -5)in the case when the cut is situated in the region xJ2<ef~, y= 0 

(curves 2) and 068 <%y= 0 (curves 2) for )L= 0.4. 

3. Let us now consider the case when frictional forces exist between the crack edges in 
the region of contact. We shall assume that the arc-like cut is situated in a region, along 
which we have a single region of mutual displacements along which the shear stresses do not 
change their sign (e.g. @<9--ysn). In this case the boundary conditions have the form 

Y-8 * = po,f, r - R Ifr 0,t E L,, U?f = 0, t E L, (3.1) 
u,+ - v,- = 0, t E L* (t = 28, a0 c a2 G 8 d i% < PO) 

where p== i_p, I( is the coefficient of friction and the plus or minus sign in determined by 
the direction of shear stresses appearing at the cut site in the solid (e.g. when s/2<$_,~ 

n, we have ~,ef= per f ,and forO<0-y<z/2we haver, f=-sa,*),aI,fiI.are so far unknown boundar- 
ies of the region of mutual displacements. 

Using relations (1.1) and (3.1), we arrive at the following conjugate problem: 

(a+ + a,3 (P + i) + f@+* -I- a-*) (pe- f) + (Q+ -!- Q-) (p-f- if + 
(Q+* + Q-*) (p - i) = 0, t @ L 

(3.2) 

(0++@-+(D+*+**+a+*+~-*+a++~-=o,~EL, 
CD+ - CD- - (a* - Q-) = 0, t E L 
2GI(u'+ - IL'-) -t- i (u'+ - d-)I = it (x(@+ - CD-) -I_ (Q+ - a-)), t E L 

We seek the solution of (3.2) in the form *(2.3). Substituting the latter into the first 
equation of (3.2) we obtain the following singular equation /6/: 

s v(p+i)+Ipr(P-0 
,t-b dt = ftp (to), p (t) = 9 (p + i) + IV (P -i)-44rp~Do/3p--)tDd*(P--i) 

L 

The solution of this equation has the form /6/ 

1 
?(p+f)+?r(p-ii)=-- 

m(b) s z (t) p (t) dt Ct 

1-b ‘t.(b) 

c=(i- ip) q*dr, o (t) = v(:- a) (t - b), a = +, b = I@ 

Computing the integral on the right-hand side of (3.3), we obtain 

r) (P -I- i) + rF (P - i) = i m 

(3.3) 

(3.4) 

An expression for C is obtained in the same way as (2.6) 

C= -AR, -AAl* J‘% (3.5) 

Substituting the expression for the function q(t) into (3.4) and using (3.5)) we arrive at a 
differential equation whose solution has the form 

h = 0, t 6~ L,; k - 1, t (E i& (3.6) 
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iA, 
F1= - F = “A,@+b) 

(I+-2i’ 1 21PfW ’ F,+ F4+$ 

g lt) = @-+e 

where %, & are the boundaries of the free surface. Substituting expression (2.3) into 
the second equation of (3.2) and using the solution (3.6) , we arrive at a singular integral 
equation whose solution, like (2.8), has the form 

Rt= -R,,8- 
( 

fd - f)= 
J&)-y I MI = - R,*~~, 

I?, = - 
r’* @ + i) (4 + 6) r’(P-0 (3Q*L24b+3b’) 

habvc/s (p - 2i) 
-- 

Pi-a 16 

IU? = - RI* Jfg, z1 (2) = y’(z - d) (2-f) , d = cifi, f = ria* 

In determining the constant Do we note that C and C, are connected by the relation 

c 
CT,=_- 2 (p _ i) + -& j (Fd -I- Fs + 3 + 2) x (t) dt + + 5 a dt 

Using (3.5),(3.6) and (3.8) we obtain 

(3.8) 

.9) D,, = (zIgI - r,~*)/(ll* - kb*) 

&(- 
3t(d-t-1)(d--0’ (p-i) 

(P + 2i) (p+a) (~'-1_2~b+3*)(dff) + 
~(P-W~Y’~)/;S~+, 3@+b)(a--)*p 

(P + 2i) (P f 20 

q- z(a-t6)(d+f)(P+o _ 

abJfz(p-24) 
,,-“&& f+g” @+*+g+ *‘) $qL& ~~~~i~~~~~~~ 

43: (VT - In* f 
rP (l/F - 1/Bt* i 1 

p-i n s 

WI + ew) * (t) dt 
t 

L# 

@P--i) 
k=3(d+f)---f%-_(a+b)+ 

2 1/z (p + i) 
-l-Q1 

Qi = = If) dt , Q*=;_i s ~~l(P-ib--tf3p+r)c**)_ 

L‘l 

Y. (1) dt 

The expressions (3.4, (3.7). (3.9) determine, in general, the singular solution at the point 8m 

&,@= a,,$= &,CI= c+, characterized by the stress intensity coefficients /5/ 

K1- 5 e,Vm-_gg' WI. xr,- = ii&)‘2 (8 - @) 1 gs’ (e) 1 f3*10) 

4+ = lirnC@GV I e'(e) 1. 4" = z VzTB1--e) lgl'(e) I 

The boundary of the free surface and regionof contact are defined by the equation (2.13) 
Since the singular shear stresses at the cut in the neighbouxhood of the boundary of the 
region of mutual displacements will always result in coupling of the compressed segment of 
the crack, therefore we construct a ncn-singular solution at the boundary separating the 
adhesion zone from the mutual displacement zone. As in /4/, the condition of equilibrium 

will be obtained by equating to zero the stress intensity coefficients 

A (t) = 0 (3.11) 



Equation (3.111, taking (3.5) into account, gives the unknown boundaries of theadhesion 

and mutual displacement zones. If both roots of this equation lie within the cut (%I & 

a* d Bz d BO)? #en the solution constructed will be singular in the neighbourhood of one tip, 
and the adhesion zone will be in contact with the other tip. 

As an example, consider a cut situated in the region II < tl <n/z, y = 0 . In this case we 

have p=p in Eq.(3.1). The figure shows the relation connecting the stress intensity coe- 
fficients and the length of the free surface domain with the stress (the solid and dashed 
lines correspond to the right and left crack tip respectively) when p = 0.4, p = -10, I, = B1 - 
a,, 1, = fir - cc2 (curves 3). 
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